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S I M P L E  W A V E S  I N  A B A R O T R O P I C  V O R T E X  F L U I D  L A Y E R  

B. N. E lemesova  UDC 533.6.011; 517.958 

Mathematical  models tha t  describe a plane-parallel vortex flow in a barotropic fluid layer with a free 
boundary are considered in a long-wave approximation. The  existence theorem of simple-wave solutions of the 
equations of motion is proved for a class of flows with a monotonic-in-depth velocity profile. In the general case, 
the anomalous behavior of the simplest waves is shown to be observed: along with simple waves decreasing 
the fluid level, simple waves increasing the fluid level that  are defined for all t > 0 can exist as well. For a 
polytropic equation of state,  a class of exact solutions that  is described by incomplete beta-functions is found. 

Teshukov [1] obtained hyperbolicity conditions of the equations for vortex flows in the case of a 
monotone-in-depth velocity profile. Exact simple-wave solutions for an incompressible fluid were constructed 
by Freeman [2] and Blythe et al. [3]. The general existence theorem of simple waves propagating in a layer 
of an eddying incompressible fluid was proved by Teshukov [4]. For a polytropic equation of state with a 
polytropic exponent  "r close to 1 (p = Cp't), Sachdev and Varughese [5] revealed the asymptot ic  behavior of a 
simple-wave solution near a free boundary. Teshukov [6] studied discontinuous solutions and constructed the 
mathematical  model of a hydraulic jump.  

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  We consider the initial boundary-value problem 

U T T U U X + v u y + p - l p x  =0, p - l p y = _ g ,  p T + u p x + v p Y + p ( u x T v y ) = O ,  

p=p(p),  p ' ( p ) > 0 ,  u(X,O,Y)=uo(X,Y) ,  h(X,O)=ho(X),  (1.1) 

Y = O: v = O, Y = h(X,T): P = p 0 = c o n s t ,  hT + uhx = v, 

that  describes the flow of an ideal barotropic fluid layer with a free boundary Y = h(X, T) over a flat bot tom 
in the gravity field (g is the acceleration of gravity). The  mathematical  model (1.1) appears if one takes into 
account that  Ho/Lo << 1, where H0 and L0 are the characteristic vertical and horizontal scales, respectively. 

After the Eulerian-Lagrangian independent  variables x, t, and ~ (X = x, T = t, and Y = (I)(x, t, )~), 
[1]) are introduced, problem (1.1) is reduced to the Cauchy problem in a fixed domain: 

1 \ \  - 1  1 / / 

k k "o / /  Jo (1.2) 

u(x,0 ,  A ) = u 0 ( x ,  Ah0(z)), H(x,O,A)=Ho(x,A)>O, 0 ~ A ~ <  1, 

where H(x, t, .\) = p(x, t, A) g(I)x is a new desired function. 
If u and H is the solution of (1.2), the initial unknowns v, p, p, and h and the replacement function 

(I) = ~(x, t, A) are found from the following relations: 

1 A 

p(x,t ,A) = Po + [ H(x,t,u) dv, p = p(p), (I) -- [ H ( x , t , u ) ( p g ) - l d u ,  
(1.3) 0 

v = 'I't + u(I)~, h = (I)(x, t, 1). 

Lavrent 'ev Inst i tute  of Hydrodynamics,  Siberian Division, Russian Academy of Sciences, Novosibirsk 
630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 38, No. 5, pp. 56-64, 
September-October ,  1997. Original article submit ted January 10, 1996; revision submit ted  March 4, 1996. 

0021-8944/97/3805-0703 $18.00 (~) 1998 Plenum Publishing Corporation 703 



Note that one solution of system (1.2) is the solution u = u(A) and H = H(A), which describes a shear flow 
(X, Y, T) in initial variables [u = u(Y), v = 0, and h = h0 =const ] .  

We shall define a simple-wave solution. According to [1], system (1.2) has the characteristics dx/dt  = ki 
of the discrete spectrum and also the characteristics dx/dt  = u(x, t, A) (A =cons t )  of the continuous spectrum. 
The characteristic roots of the discrete spectrum are determined by the equation 

1 I 

p ( p o +  / H ( x , t , u ) d u )  = f H ( x , t , u ) ( u ( x , t , u ) - k i ) - 2 d u ,  (1.4) 
0 0 

which always has, outside the interval of variation of the function u(x, t, A), only two real roots (kl and k2) 
max u(x, t, A). such that kl < min u(z ,  t, A) and k2 > 0~<,x~<1 

We call the solution u = u(rl(x,t) ,A ) and H = H(r~(z,t), A), where r/(x,t) is the function of variables 
z and t, a simple-wave solution of Eqs. (1.2). In what follows, as a simple-wave parameter,  we choose the 
function of pressure distribution at the bottom: 

1 

j H(x, t, A) dA = t). (1.2) 
0 

For system (1.1), by virtue of relations (1.3), the simple-wave solution is 

p = p l ( r l ( X , T ) , Y ) ,  u = u l ( r l (X ,T ) ,Y ) ,  v = h x v l ( r l ( X , T ) , Y  ). (1.6) 

In the present paper, we consider simple waves that  are subject to the condition 

k = -rltlriz • u (1.7) 

for any A. For simple waves, from (i.2) we obtain the equations 

u,7 = -(P(Po + rl)(u - k)) -1, Hn = H(p(po + r / ) ) - i (u  - k) -2. (1.8) 

With allowance for (1.5), integration of the second equation in (1.8) over A from 0 to 1 yields that  k should 
satisfy the characteristic equation (1.4). For definiteness, we analyze simple waves that  correspond to the 
right-hand characteristic root k = k2 (the case k = kl is considered similarly). It is convenient to derive a 
differential equation for k by differentiating (1.4) on (1.8): 

1 1 
( 3 [ 

k,(,) = r  p(p0 + 0)-- . ( u -  
0 0 

For system (1.8) and (1.9), it is reasonable to formulate the Cauchy problem with the following data  for 77 = q0 
(r/0 =cons t ) :  

H(r/0, A) = n0(A), u(r/0, A) = u0(A), k(r/0) = ko. (1.10) 

Here k0 is the right-hand root of Eq. (1.4) for u = u0(A) and H = Ho(.\) [k0 > max u0(A)]. 
0<;~<1 

If u, H, and k is the solution of problem (1.8)-(1.10), relation (1.7) is intended for the determination 
of 77 = rl(x,t ). It follows from (1.7) that  77 is constant along the characteristics dx/dt  = k2 of system (1.2). 
Problem (1.8)-(1.10) is the problem of contiguity of the continuous simple-wave solution to a given shear flow 
on the characteristic that  corresponds to r/ = 770 (q0 is the constant depth of the shear flow in variables x 
and A). 

Let us consider an alternative formulation of the problem of finding a simple wave. We change the 
variables in Eqs. (1.1). Let us denote ~" = dp/dt = PT + upx  + vpy. We regard x, p, and t, where X = x and 
T = t, as independent variables, and u, Y, and v as new unknown quantities. This can be done owing to the 
monotone dependence of p on Y: 

py = -p(p)  g. (1.11) 
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System (1.11) is t ransformed to 

u t + u u z + r u p - t - g V x = O ,  y p = _ ( p ( p ) g ) - l ,  ux A- ~-p = 0. (1.12) 

Note that  system (1.12) is close to the system of a long-wave approximation of an incompressible fluid [the 
"velocity" divergence (u, r )  is equal to zero]. In variables (x, p), the unknown boundary Y = h(X,  T) becomes 
known, and the boundary  condition is transformed to 

p = 0 :  r = 0  (1.13) 

(without loss of generality, one can consider p0 = O, because the case p0 # 0 is similar). In new variables, the 
known boundary Y = 0 becomes unknown. If r/(z,t) is the pressure distribution at the bo t tom Y = O, the 
relation 

yt + u g .  = r (1 .14)  

should be satisfied at the unknown boundary p = r/(x, t). 
If u, r ,  and r/is the solution of problem (1.12)-(1.14), then h is found from the relation 

,(~,0 

h = f (p(s )g ) - lds ,  (1.151 
0 

obtained by integration of (1.11). In this case, p ( X , Y , T )  = F ( g ( h -  Y)) can be found by inversion of the 
function 

p 
h - Y = / ( p ( s ) g ) - l d s .  (1.16) 

0 

The vertical velocity is given by the relation v = Yt + uYx + rYp. In variables (x, p, and t), owing to (1.15) 
and (1.16), the simple wave is specified by the relations u = U(rl(X , t),p) and r = rlxr(rl(x , t),p). 

By virtue of Eqs. (1.12), one can introduce an analog of the stream function �9 = ql(rl(X, t),p) using 
the relations u = ~p and r = --r/~kT/,. From the condition at the boundary p = rl(x, t), 

k = - ~ , / ~ =  = - ( %  + ~ , ) ( ~ , ~ )  = - [~( ,~ ,  ~)1',. (1.17) 

With allowance for (1.17), from the first equation in system (1.12) we obtain 

(% _ [~(~, ~)], ) ~ p ,  _ % % ~  + p- l (p )  = 0. (1.18) 

At the boundary p = 0, the condition (r  = 0) 

�9 ~(~,0) = 0 (119)  

should be satisfied. 
Thus,  the problem of finding a simple wave reduces either to the Cauchy problem (1.8)-(1.10) or to 

the problem (1.18) and (1.19). 
3. E x i s t e n c e  o f  S i m p l e  Waves .  The problem of the existence of simple waves is t reated for the 

monotone velocity profile u0~ > 0. It follows from (1.8) that  (u~H-1)~ -- 0. The  relation 

u;~H -1 = uo:~Ho 1 (2.1) 

then is the integral of system (1.8) and (1.9). By virtue of (2.1), ux > 0 in the region of determinat ion of a 
simple wave. In addit ion,  the characteristic equation (1.4) is also the integral of system (1.8)-(1.10). We prove 
the existence theorem of the solution of problem (1.8)-(1.10). We primarily obtain a priori estimates of the 
solution. 
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L e m m a .  Assume that u, H, and k is the solution of problem (1.8)-(1.10), and the inequalities 0 < 
Wl ~ w = uoa Ho  I <. w2 < o% where wl = min w(A) and w2 = max w(A), are satisfied. The estimates 

o~x~l o<~A~<1 

2 

are then valid. 
P r o o f .  By virtue of (2.1), we have 

~/w27/2 + 4w2r + w2r/ (2.2) 
< l u - / e l  < 2 

t 
~lri <<. u 2 -- Ul - - - - /wH(rhA)dA ~< w2r/, (2.3) 

0 

where u2 = u(r/, 1) and ul = u(r/,0). It follows from (1.4) that 
I 

u 2  - u 1 
P(Po + rl) > w~'  u~(u - k)-2dA = o.~(u2 -- k)(u, - k)" (2.4) 

0 

Since (u2 - k)(ul - k) > 0 and u,  - k = (u,  - u2) + (u2 - k), from (2.3) and (2.4) follows the lower estimate 

lu2 - kl >  /(u2 - u x ) 2 + 4 ( u 2  - - 
2 > 2 

Similarly, we obtain the upper  estimates: [Ul - k[ < (r + 4w2r/(ptOl) -1 + w2r/)/2. The  assertion of the 
lemma follows from the inequalities [u2 - kl ~< lu - kl ~< lu ,  - kl .  The lemma is proved. 

We use the  existence theorem of a solution of the Cauchy problem for a nonlinear equation in the 
Banach space B: 

dz 
d-7 = / ( x ,  t), x(t0) = (2.5) 

Here f ( z ,  t) is the function of real t and variable x E B which takes values in the space B. 
Let the function f ( x , t )  be continuous in t and be subject to the conditions I I f (z , t ) l l  ~< M1 and 

I I f ( z a , t ) -  f (z2 ,  t)ll ~< M 2 1 1 z l -  z211 for t e [a,b] and I I z -  zoll ~< 0. According to [7], there exists a number 
[61 > 0 61 = rain (OM~ 1, M ~  1 )] such that  the  Cauchy problem (2.5) has, on the interval (to - 61, to + 81 ) 13 [a, b], 
a unique solution z = ~(t)  left in the sphere: Ilk(t) - z011 <~ o. 

To take advantage of the  result presented, we consider the Banach space B of the vector functions 
U = (u, H, k) of real argument  A E [0, 1] 

B = { ( u , H , k ) / u  e C'[0, t],H e C [o, ll, k e R} 

with the norm 

[IUl] = max luA[ q- max [ul q- max IHI q-[}l, 
o ~ 1  o~A~I o ~ 1  

where cl[0, 1] is the set of continuously differentiated functions on the closed interval [0, 1], C [0, 1] is the set 
of continuous functions, and R is the numerical straight line. 

Let Uo = (uo, H0, ko) E B. Since uo and Ho are continuous on the closed interval [0, 1] and uo - k0 < 0 
and H0 > 0 ,  there exists a constant  0 > 0 s u c h t h a t  l u 0 - k o l > / l u o ( 1 ) - k o l > 0 a n d  rain Ho > 0 .  In space 

B, we consider a sphere: I I U - U o l l  < 0/2. We show that ,  for U from the sphere, the inequalities [ u -  k I > 0/2 
and IHI > 0/2 are satisfied. Indeed, 

l u - k l ~ > l u o - k o l - I I U - U o l l > 0 / 2 ,  rain I H I >  rain [ U 0 [ - I I U - U 0 1 1 > 0 / 2 .  (2.6) 
0~<A~<l o~<A~<l 

By virtue of the continuity of the operator f ( U ,  h), in the domain (2.6), there exist constants MI(O, U0) and 
M2(O, Uo) such that  

I l f (U,  rl)ll ~ M , ( 0 , U 0 ) ,  [If(Uz,r l)  - f ( U , , r l ) l l  ~ / 2 ( 0 ,  U0)IIU2 - Will.  (2.7) 
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Using the above result, we establish the fact of the existence and uniqueness of the solution of problem 
(1.8)-(1.10) on the interval [r/0 -*1,r /0  + ~I] in space B. 

T h e o r e m .  Let uo and 11o satisfy the conditions of the/emma. The solution of problem (1.8)-(1.10) 
exists on any finite interval ,7 E [~, A], where ~ > 0 and A < oo, and belongs to the space B. 

P r o o f .  With U = (u, H, k) E B and 17 E [~, A], by virtue of (2.2), the inequalities 

k/w~2 + 4w218/(p(po + m)to21) -w18 ~/w~a 2 + 4w2a/(p(po + 6)~1) + w2m 
< lu - kl < (2 .8 )  

2 2 

hold true. Having differentiated the first equation in (1.8) with respect to A and having integrated over r/, we 
obtain 

,1 
ua(rI, A) = uoA(A)exp ( / p - l ( s ) ( u -  k)-2ds}. (2.9) 

i/0 

After integration of the second equation in (1.8), we find 

H(r/, A) = H0(A) exp { f p-l(s)(u - k)-2ds}. (2.10) 
170 

After that ,  by virtue of (2.8)-(2.10) the conditions (2.7) are satisfied with the same constants M1 and /142, 
which are dependent  only on 6, A, and U0 = (u0, H0, k0). Therefore, having constructed the solution on the 
interval [,7o - 61, rl0 + 61], one can extend it uniquely over the entire interval [~, A]. The  theorem is proved. 

The simple wave will be constructed if one solves the equation 

r/t +/c  (r/) r/z = 0. (2.11) 

According to the known facts of the theory of quasi-linear equations [8], the properties of the solutions (2.1 1) 
depend on whether  the derivative k'(r/) is of a fixed sign [Eq. (2.11) satisfies the convexity condition or does 
not satisfy it]. It follows from Eq. (2.11) that  along the characteristics dz/dt = k 

= + ( 2 . 1 2 )  

It follows from (2.12) that  if k'(rlo),l'o(z ) > 0, the derivative r/~ remains bounded (10 1 I 0 1), and the 
solution of Eq. (2.11) exists for any t. If k'(,7o)rl~o(Z) < 0, the solution of (2.11) exists only for finite t. Let us 
consider the sign of the function k'(r/). If the function of the equation of state p = p(po + rj) is such that  the 
inequality, 

3p - rlp'(po + r/) > 0, (2.13) 

which is an analog of the normali ty condition of the gas for system (1.2) [6], is satisfied, then k'(r/) > 0. 
Indeed, since 

1 2 1 

0 0 

the numerator  on the r ight-hand side of the equation for k (1.9) is negative: 

1 
3 [ , 3p p' -~jH(u-k)-4du~<p - - - < 0 .  

o '/ 
Since u - k < 0, we obtain k~(q) > 0. In the general case, as is skown in [6], the inequality (2.13) can be 
violated even when the initial equation of state of a barotropic medium is subject  to the convexity condition. 
In a definite range of ,7 variation, the derivative k'(r/) can change sign. In the neighborhood of the points of 
sign alternation, k(r/) has either a maximum or a min imum [k"(r/) ~ 0 is assumed at these points]. 
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Let the condition (2.13) be not satisfied. From the inequality 

uv H pl 3 1 
P w,p (u k) 4 dv ~< p - (u k)------------ q dv ~< - uv -- -- w2P0  ( u - k )  4dr/'  

with allowance for the a priori estimates of the lemma (u2 - ul)(pw2)-I ~< (ul - k)(u2 - k) ~< (u2 - ui )(pwl) -1, 
we obtain the following new inequalities: 

, 3 : Hdv  p, 3w 2 p2 wA. 

If the function p = p(po + 71) and the initial data  are such that  the inequality 

i 2 2 
< 0 p - 3 - (2.14) 

is satisfied, then k'(r/) > 0 is in the 'domain of determination of a simple wave, despite the fact that  (2.13) is 
not satisfied. If the inequality 

p ' -  - > 0 

is satisfied on a part  of the interval of determination of the simple wave, and the inequality (2.14) is satisfied 
on the other part, k'(r/), undoubtedly, changes sign in the simple-wave region. 

Let us call the simple wave a wave decreasing (increasing) the fluid level if the inequality r/t + u(r/, 1) r/~ = 
(u(r/, i) - k) r/x < 0 (>  0) is satisfied and call it a centered wave if k(?) = x/ t .  

It follows from (2.12) that  if k'(r/) > 0, the gradient catastrophe will occur in the wave increasing the 
fluid level, and the waves decreasing the fluid level exist for any t > 0. If k~(r/) < 0, the waves increasing the 
fluid level exist for any t, and those decreasing the fluid level exist only for finite t. The centered waves for 
t > 0 are the waves decreasing the fluid level ( r /<  r/0) if k~(r/) > 0 for any 77 and the waves increasing the fluid 
level ( r />  r/0) if k'(r/) < 0. If k'(r/) changes sign, the simple centered wave will be defined only for r/E [r/0, r/.], 
where k'(r/.) = 0 (in the centered wave, the slope of the characteristics will change monotonically). 

Thus, the wave exists either for any t > 0 or only for finite t, depending on the initial equation of state 
and on the initial data. Sign alternation of the derivative k'(h) has an analog in gas dynamics with anomalous 
thermodynamic properties. In the general case, simple waves decreasing and increasing the fluid level which 
are determined for all t > 0 can exist. 

3. E x a c t  So lu t i ons .  Let us consider the problem of construction of a simple wave (1.18) and (1.19) 
for a medium with a polytropic equation of state: p = p2-r (0 < 3' < 1/2). In this case, relations (1.15) and 
(1.16) are integrated as follows: 

h = (2(/3 - l)g)- 'r/2(/~-'),  Y/h = 1 - (p/r/)2(/~-,). (3.1) 

Equation (1.18) admits a one-parameter group of extensions: p ~ bp, 77 ---, br/, and ~P ~ b3/2-7~ (b is the 
parameter of the group). We construct the solution of Eq. (1.18) that  is invariant under the indicated group. 
According to the known algorithm of searching for invariant solutions, we assume that  

~(r/, p) = r /3/2- ,~,  (ply), (3.2) 

where ~ i  is a new unknown function of the argument. Let t, = p/r~, ~q = 3 / 2 - 7 ,  and A = k~1(1). Substituting 
(3.2) into (1.18), we obtain the following equation for determination of ~1: 

/3(z:A - kO1)kO' l' + (/3 -- 1 ) ( ~ )  2 --/3(/3 -- 1)AkO' 1 + 1 = 0. (3.3) 

The boundary condition (1.19) is transformed to the form ~ ( 0 )  = 0. Owing to (3.3), the function ~(z:) = 
t~A - ~l( t ' )  should satisfy the equation 

- / 3 r 1 6 2  + (/3 - 1)(A - ~,)2 _ ~(/3 - 1) A 2 + fl(/~ - 1) 4)' + 1 = 0 (3.4) 
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and be sub jec t  to the  bounda ry  conditions (I)(0) = r  = 0. After  thc subs t i tu t ion  (I)' = L((I)), Eq. (3.4) is 
integrated as follows: 

r = C(bl - L)'~(L - b2) 6. (3.5) 

Here bl and b2 are the  roots  of the  square equat ion,  L 2 -I- (/3 - 2) AL --I- (1 - / 3 )  A 2 -I- 1/(13 - 1) = 0, 6 = 
-/~b2(~ - 1)-1(bi  - b2) -1 ,  e~ = /3b1(fl - 1)-1(bl  - b2) -1 ,  and C is an arb i t rary  constant .  The  boundary  
conditions for the  funct ion (I) are satisfied at the  points L = bl and L = b2 under  the  condit ion that  a > 0 
and 6 > 0. Let v -- 0 and 1 correspond to L = b2 and bl. Since L = dr we have from (3.5) 

(L-b2)(bl - b 2 )  - I  1 

P f z6-1(1 z)~-ldz/fz6-1(1 z )~- ldz .  (3.6) 

0 0 

With  allowance for the  above  replacements,  we find the  horizontal velocity u and the velocity of the 
characterist ics k: 

u = r = (r/#(uA - (I)))~ = q#- l (A  - L), k = ~Ar/#-1.  (3.7) 

By virtue of (3.1) and (3.7), f rom (3.6) we obtain the  following relationship be tween  u and Y: 

( A - b 2 - u / ~ ) ( b l - b 2 )  -1 1 2(#--1) 

- - 1  / Z~i--l(1 Z) a-1 d z /  z) a-1 -- j z6-1(1 - dz (3.8) 

0 0 

Formula (3.8) de termines  the  velocity profile in the  simple wave u = u(h(x, t), Y). The  velocity varies 

from u = Ul = ~2g(/3 - 1 ) h ( A - b l )  at the  b o t t o m  [Y = 0 ( p =  r/(x,t))] to u = u2 = ~/2g(/3 - 1 ) h ( A - b 2 )  
on a free surface [Y = h ( X , T )  (p = 0)]. For satisfaction of the  inequali ty a > 0 and ~ > 0, it suffices to 
require tha t  A 2 > (fl - 1) -2.  If A > (~ - 1) -1 > 0, then k > Um~x = u2. If A < - ( f l  - 1) -1 < 0, then 
k < Umin = ul .  The  case A 2 = ( ~ -  1) -2 yields b2 = 0, u = q # - l A ,  and k = ~Aq #-1,  which corresponds 
to a shear-free flow (ug - 0). Note  that  ~ = 3/2 corresponds to an incompressible fluid [p(p) = const]. In 
this case, solut ion (3.8) coincides, up to insignificant t ransformat ions ,  with Freeman's  solution [2]. Here the 
parameter  (2bl + b2)/(4b2 + 2bl) corresponds to the  paramete r  a 2 from [2]. 

Figure 1 shows the profile of the  horizontal veloci ty for ]~ = 4/3,  A 2 = 17, and A > 0. Formula  (3.8) 
determines Y/h  as a function of (u - Ul)/(u2 - ul). 

Figure 2 shows the  diagrams of the  dependence  of (u - ul)/(u2 - ul) on Y/h  for /3 = 3/2,  4/3, 
and 5/4 and A = 5. The  vertical straight line corresponds to A = (fl - 1) - I  (shear-free flow). In the case 
of a centered simple wave (k(q) = x/t)) ,  from (3.1) and (3.7) we obtain the  shape of the  free surface: 
h(X ,T)  = ( 2 ~ 2 ( f ~ ,  1 ) A 2 g ) - I ( X / T )  2. 

Figure 3 shows the  diagrams of the  free surface for ~ = 4 /3  and A 2 = 17 and of the contac t  surfaces 
[Y = Y(I~, X / T )  (# = const)] for various # (the value of # is de termined as follows: # = Y/ho for X = koT). 

As a result ,  we have found that  a simple wave tha t  is uniquely defined by a given pressure dis t r ibut ion 
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at the bottom for t = 0 can be adjacent on the characteristic to any shear flow with a monotone-in-depth 
velocity profile. The simple wave has been found either to exist for any t > 0 or decay, depending on the 
properties of the monotone functions k(r/) and r/(x, 0). In a barotropic medium, with the equation of state, 
which is subject to the convexity condition, one can observe the anomaloas behavior of simple waves: there 
are waves increasing the fluid level that  do not decay for t > 0. We have obtained a class of exact solutions of 
the system of simple-wave equations that describe simple waves propagating in a barotropic fluid layer with 
velocity k =/3A~/2(/3 - 1)gh. This solution is a generalization of the simple waves in an incompressible fluid 
that were found by Freeman [2]. 

The author expresses her gratitude to Professor V. M. Teshukov for his attention to the work and his 
assistance. 
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